In 1958, Dr. Roger Bacon created high-performance carbon fibers at the Union Carbide Parma Technical Center, located outside of Cleveland, Ohio.[3] Those fibers were manufactured by heating strands of rayon until they carbonized. This process proved to be inefficient, as the resulting fibers contained only about 20% carbon and had low strength and stiffness properties. In the early 1960s, a process was developed using polyacrylonitrile (PAN) as a raw material. This had produced a carbon fiber that contained about 55% carbon.
The high potential strength of carbon fiber was realized in 1963 in a process developed at the Royal Aircraft Establishment at Farnborough, Hampshire. The process was patented by the UK Ministry of Defence then licensed by the NRDC to three British companies: Rolls-Royce, already making carbon fiber, Morganite and Courtaulds. They were able to establish industrial carbon fiber production facilities within a few years, and Rolls-Royce took advantage of the new material's properties to break into the American market with its RB-211 aero-engine.
Even then, though, there was public concern over the ability of British industry to make the best of this breakthrough. In 1969 a House of Commons select committee inquiry into carbon fiber prophetically asked: "How then is the nation to reap the maximum benefit without it becoming yet another British invention to be exploited more successfully overseas?" Ultimately, this concern was justified. One by one the licensees pulled out of carbon-fiber manufacture. Rolls-Royce's interest was in state-of-the-art aero-engine applications. Its own production process was to enable it to be leader in the use of carbon-fiber reinforced plastics. In-house production would typically cease once reliable commercial sources became available.
Unfortunately, Rolls-Royce pushed the state-of-the-art too far, too quickly, in using carbon fiber in the engine's compressor blades, which proved vulnerable to damage from bird impact. What seemed a great British technological triumph in 1968 quickly became a disaster as Rolls-Royce's ambitious schedule for the RB-211 was endangered. Indeed, Rolls-Royce's problems became so great that the company was eventually nationalized by Edward Heath's Conservative government in 1971 and the carbon-fiber production plant sold off to form Bristol Composites.
Given the limited market for a very expensive product of variable quality, Morganite also decided that carbon-fiber production was peripheral to its core business, leaving Courtaulds as the only big UK manufacturer.
The company continued making carbon fiber, developing two main markets: aerospace and sports equipment. The speed of production and the quality of the product were improved.
Continuing collaboration with the staff at Farnborough proved helpful in the quest for higher quality, but, ironically, Courtaulds's big advantage as manufacturer of the "Courtelle" precursor now became a weakness. Low cost and ready availability were potential advantages, but the water-based inorganic process used to produce Courtelle made it susceptible to impurities that did not affect the organic process used by other carbon-fiber manufacturers.
Nevertheless, during the 1980s Courtaulds continued to be a major supplier of carbon fiber for the sports-goodsmarket, with Mitsubishi its main customer. But a move to expand, including building a production plant in California, turned out badly. The investment did not generate the anticipated returns, leading to a decision to pull out of the area. Courtaulds ceased carbon-fiber production in 1991, though ironically the one surviving UK carbon-fiber manufacturer continued to thrive making fiber based on Courtaulds's precursor. Inverness-based RK Carbon Fibres Ltd has concentrated on producing carbon fiber for industrial applications, and thus does not need to compete at the quality levels reached by overseas manufacturers.
During the 1970s, experimental work to find alternative raw materials led to the introduction of carbon fibers made from a petroleum pitch derived from oil processing. These fibers contained about 85% carbon and had excellent flexural strength.
ไม่มีความคิดเห็น:
แสดงความคิดเห็น